Initial Explorations of CCG Supertagging for Universal Dependency Parsing

نویسندگان

  • Burak Kerim Akkus
  • Heval Azizoglu
  • Ruken Cakici
چکیده

In this paper we describe the system by METU team for universal dependency parsing of multilingual text. We use a neural network-based dependency parser that has a greedy transition approach to dependency parsing. CCG supertags contain rich structural information that proves useful in certain NLP tasks. We experiment with CCG supertags as additional features in our experiments. The neural network parser is trained together with dependencies and simplified CCG tags as well as other features provided.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dependency Hashing for n-best CCG Parsing

Optimising for one grammatical representation, but evaluating over a different one is a particular challenge for parsers and n-best CCG parsing. We find that this mismatch causes many n-best CCG parses to be semantically equivalent, and describe a hashing technique that eliminates this problem, improving oracle n-best F-score by 0.7% and reranking accuracy by 0.4%. We also present a comprehensi...

متن کامل

Joint A∗ CCG Parsing and Semantic Role Labeling

Joint models of syntactic and semantic parsing have the potential to improve performance on both tasks—but to date, the best results have been achieved with pipelines. We introduce a joint model using CCG, which is motivated by the close link between CCG syntax and semantics. Semantic roles are recovered by labelling the deep dependency structures produced by the grammar. Furthermore, because C...

متن کامل

Integrated Supertagging and Parsing

Parsing is the task of assigning syntactic or semantic structure to a natural language sentence. This thesis focuses on syntactic parsing with Combinatory Categorial Grammar (CCG; Steedman 2000). CCG allows incremental processing, which is essential for speech recognition and some machine translation models, and it can build semantic structure in tandem with syntactic parsing. Supertagging solv...

متن کامل

Joint A* CCG Parsing and Semantic Role Labelling

Joint models of syntactic and semantic parsing have the potential to improve performance on both tasks—but to date, the best results have been achieved with pipelines. We introduce a joint model using CCG, which is motivated by the close link between CCG syntax and semantics. Semantic roles are recovered by labelling the deep dependency structures produced by the grammar. Furthermore, because C...

متن کامل

CCG Supertagging with a Recurrent Neural Network

Recent work on supertagging using a feedforward neural network achieved significant improvements for CCG supertagging and parsing (Lewis and Steedman, 2014). However, their architecture is limited to considering local contexts and does not naturally model sequences of arbitrary length. In this paper, we show how directly capturing sequence information using a recurrent neural network leads to f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017